redplanet.Craters.get
get(
crater_id: None | str | list[str] = None,
name: None | str | list[str] = None,
lon: None | tuple[float, float] = None,
lat: None | tuple[float, float] = None,
diameter: None | tuple[float, float] = None,
has_age: None | bool = None,
as_df: bool = False,
) -> list[dict] | pandas.core.frame.DataFrame
Filter/query a dataset of craters >50km diameter, with ages/names when available. Calling this with no arguments will return the full dataset.
We create a custom dataset (0.28 MiB) which unifies the following:
- Global database of Martian impact craters (Robbins & Hynek, 2012).
- Crater ages from both Hartmann and Neukum isochron methods (Robbins et al., 2013).
- IAU-approved crater nomenclature (USGS Astrogeology Science Center, 2024}).
For more information and code to reproduce the dataset, see https://github.com/Humboldt-Penguin/redplanet/tree/main/datasets/Craters -- TODO: I'll eventually have a section on my website to describe datasets and how we modified them, add a link to that here.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
crater_id
|
None | str | list[str]
|
Unique crater identifier formatted ##-######, where the first two numbers indicate the Mars subquad and the last six number the craters in that subquad from largest to smallest diameter. |
None
|
name
|
None | str | list[str]
|
Crater name according to official IAU nomenclature (as of 2024-11-26). |
None
|
lon
|
None | tuple[float, float]
|
Filter craters whose center falls within this range of longitudes. The given range must be a subset of either [-180,180] or [0,360] -- e.g. |
None
|
lat
|
None | tuple[float, float]
|
Filter craters whose center falls within this range of latitudes. |
None
|
diameter
|
None | tuple[float, float]
|
Filter craters whose diameter falls within this range, in kilometers. |
None
|
has_age
|
None | bool
|
If True, only return craters with both Hartmann/Neukum isochron ages available. Default is False. |
None
|
as_df
|
bool
|
If True, return a pandas DataFrame. Default is False, which returns a list of dictionaries. |
False
|
Returns:
Type | Description |
---|---|
list[dict] | pd.DataFrame
|
Filtered list of craters with keys/columns:
|
References
- Robbins, S. J., & Hynek, B. M. (2012). A new global database of Mars impact craters ≥1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). https://doi.org/10.1029/2011JE003966 [Database available at https://craters.sjrdesign.net/]
- Robbins, S. J., Hynek, B. M., Lillis, R. J., & Bottke, W. F. (2013). Large impact crater histories of Mars: The effect of different model crater age techniques. Icarus, 225(1), 173-184. https://doi.org/10.1016/j.icarus.2013.03.019 [For age data, see Supplementary Table 3]
- USGS Astrogeology Science Center (2024). Gazetteer of Planetary Nomenclature: Craters on Mars [Dataset]. U.S. Geological Survey. https://planetarynames.wr.usgs.gov/SearchResults?Target=20_Mars&Feature%20Type=9_Crater,%20craters [Accessed 2024-11-26]
Source code in src/redplanet/Craters/getter.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
|